Die Varianz verstehen und berechnen

Die Varianz gibt an, wie sich deine Beobachtungswerte um den Mittelwert aller Beobachtungen verteilen.

Da sie die Streuung der Werte um den Mittelwert beschreibt, gehört die Varianz zu den Streuungsmaßen. Für das Interpretieren statistischer Ergebnisse in deiner Bachelorarbeit oder deiner Masterarbeit solltest du auch Lageparameter verwenden.

Beispiel
Wir haben 5 Personen gefragt, wie viele Stunden Sport sie pro Woche treiben.

Person 1 2 3 4 5
Stunden Sport/Woche 2 3 7 5 3

Mittelwert: mittelwert-beispiel

Varianz: varianz-beispiel

Die Varianz berechnen

Formel zur Stichprobenvarianz
formel-stichprobenvarianz
s2 Varianz
n Gesamtzahl der Beobachtungen
xi Beobachtungswert
arithmetisches Mittel (Mittelwert) der Stichprobe
Beachte
N für Grundgesamtheit,  n – 1 für Stichprobenvarianz

In unseren Beispielen bestimmen wir die Varianz einer Stichprobe, also eines Teils, den wir aus einer Grundgesamtheit entnehmen. Um die Varianz für die Grundgesamtheit zu bestimmen, wird eine leicht andere Formel verwendet.

Für die Berechnung ist es vor allem wichtig, zu beachten, dass wir bei der Varianz für die Grundgesamtheit durch die Gesamtanzahl N und bei der Stichprobenvarianz durch Gesamtanzahl an Beobachtungen minus 1 (n – 1) teilen.

Formel zur Varianz der Grundgesamtheit
formel-varianz-grundgesamtheit
σ2 Varianz
N Gesamtzahl
xi Beobachtungswert
μ arithmetisches Mittel (Mittelwert) der Grundgesamtheit

Die Varianz einer Stichprobe in fünf Schritten bestimmen

Nehmen wir an, wir haben acht Personen nach ihrem Alter gefragt und folgende Antworten erhalten:

Person 1 2 3 4 5 6 7 8
Alter 18 24 22 18 22 25 19 20

In der Abbildung sehen wir die Verteilung der verschiedenen Altersangaben der Personen. Die rote Linie zeigt das arithmetische Mittel des Alters in der Gruppe.

varianz-beispielverteilung

Allgemein Beispiel
1 Bestimme zunächst den Mittelwert x̄ deiner Beobachtungswerte. Wir berechnen den Mittelwert (x̄), indem wir alle Altersangaben addieren und dann die Summe durch die Gesamtanzahl der Personen teilen.
beispiel-mittelwerte-bestimmen
2 Berechne nun die Abweichungen der Beobachtungswerte vom Mittelwert.

Subtrahiere dazu den Mittelwert von den einzelnen Beobachtungswerten.

Nun bestimmen wir die Abweichungen der einzelnen Altersangaben vom Mittelwert x̄ = 21. Dazu ziehen wir den Mittelwert von jeder Altersangabe ab.

18 – 21 = -3 22 – 21 = 1
24 – 21 =  3 25 – 21 = 4
22 – 21 =  1 19 – 21 = -2
18 – 21 = -3 20 – 21 = -1
3 Da die Varianz nicht negativ sein kann, quadrieren wir das Ergebnis. Wir quadrieren die Abweichungen, d. h. wir rechnen (Wert aus Schritt 2)2.

(-3)2 = 9 12 = 1
32 = 9 42 = 16
12 = 1 (-2)2 = 4
(-3)2 = 9 (-1)2 = 1
4 Bilde nun die Summe aus den quadrierten Abweichungen. Wir addieren alle Ergebnisse aus Schritt 3.

9 + 9 + 1 + 9 + 1 + 16 + 4 + 1 = 50

5 Nimm die Gesamtanzahl der Beobachtungen minus 1 und teile die Summe aus Schritt 4 durch diese Zahl. Wir teilen die Summe aus Schritt 4 durch 7, da wir insgesamt acht Personen nach dem Alter gefragt haben.

8 – 1 = 7

beispiel-fuenfter-schritt-varianz

Was ist dein Score?

Erfahre binnen 10 Minuten, ob du ungewollt ein Plagiat erzeugt hast.

  • 70+ Milliarden Internetquellen
  • 69+ Millionen Publikationen
  • Gesicherter Datenschutz

Zur Plagiatsprüfung

Von der Varianz zur Standardabweichung

In dem Beispiel sehen wir, dass die Varianz aufgrund der Einheit (z.B. Jahre2) nicht sehr aussagekräftig ist.

Um eine Aussage über die Streuung machen zu können, müssen wir daher zunächst die Standardabweichung aus der Varianz berechnen.

Merke
Die Standardabweichung erhalten wir, indem wir die Wurzel aus der Varianz ziehen.

Für unser Beispiel bedeutet dies:

Varianz 7.14 [Jahre2]
Standardabweichung √7.14 ≈ 2.67 [Jahre]

Die Varianz in Excel berechnen

In Excel können wir die Varianz unseres Datensatzes mithilfe der Funktion VARIANZ bestimmen.

Schreibe dazu =VARIANZ oder =VAR und gib in den Klammern die Zellen mit den Werten an, für die du die Varianz bestimmen willst.

Da wir in unserem Beispiel die Varianz aller Altersangaben bestimmen wollen, fügen wir B3:I3 in den Klammern ein und erhalten eine Varianz von 7.14.

beispiel-varianz-in-excel-berechnen

Häufig gestellte Fragen

Was ist die empirische Varianz?

Die Varianz gibt die mittlere quadratische Abweichung der Beobachtungswerte um ihren Mittelwert an.

Wie kann ich die Varianz bestimmen?

Wir können die Varianz in fünf Schritten bestimmen:

  1. Mittelwert aller Beobachtungswerte berechnen.
  2. Abweichungen der Beobachtungswerte vom Mittelwert bestimmen.
  3. Abweichungen (aus Schritt 2) quadrieren.
  4. Quadrierte Abweichungen (aus Schritt 3) addieren.
  5. Summe (aus Schritt 4) durch Gesamtanzahl der Beobachtungen – 1 teilen.
Wie kann ich aus der Varianz die Standardabweichung bestimmen?

Hast du die Varianz gegeben, so kannst du die Standardabweichung berechnen, indem du die Wurzel aus der Varianz ziehst.

Beispiel
Varianz: 9

Standardabweichung: √9 = 3

War dieser Artikel hilfreich?
Valerie Benning

Hi, ich bin Valerie und schreibe zur Zeit selbst meine Masterarbeit in Psychologie. Meine Erfahrungen aus dem Studium teile ich gerne, damit Studierenden statistische Themen leichter fallen. Hast du Fragen? Dann schreibe gerne einen Kommentar unter einen der Artikel.

1 Kommentar

Valerie Benning
Valerie Benning (Scribbr-Team)
6. April 2020 um 12:28

Danke fürs Lesen! Ich hoffe dieser Artikel hat dir weitergeholfen. Hast du noch eine Frage? Hinterlasse einen Kommentar und ich werde mich so schnell wie möglich bei dir zurückmelden.

Hinterlasse einen Kommentar oder eine Frage

Please click the checkbox on the left to verify that you are a not a bot.