Durchführung und Interpretation der Regressionsanalyse

Mit einer Regressionsanalyse überprüfst du, ob ein Zusammenhang zwischen den Werten von zwei oder mehreren Variablen besteht, wie z. B. zwischen dem Gewicht und der Größe einer Person.

Dieser Zusammenhang wird bei einer Regressionsanalyse in Form eines Vergleichs getestet.

Dieser Vergleich zeigt die Veränderung der abhängigen Variable Gewicht, wenn sich der Wert der erklärenden (unabhängigen) Variable Größe um den Wert 1 erhöht.

Verwendung der Regressionsanalyse

Die 3 Hauptgründe für eine Regressionsanalyse sind:

1. Die Stärke des Zusammenhangs zwischen zwei Variablen herausfinden.

Beispiel
  • Wie stark ist der Zusammenhang zwischen der Größe und dem Gewicht einer Person?
  • Wie stark ist der Zusammenhang zwischen dem Alter und dem Wert eines Autos?

2. Die Veränderung der abhängigen Variablen voraussagen, wenn sich der Wert der erklärenden Variablen verändert.

Beispiel
  • Inwiefern verändert sich das Gewicht, wenn sich die Größe einer Person verändert?
  • Inwiefern verändert sich der Wert eines Autos, wenn sich das Alter des Autos ändert?

3. Einen zukünftigen Wert voraussagen.

Beispiel
  • Wie schwer ist ein 180 cm großer Mann?
  • Welchen Wert hat ein Auto, wenn es sechs Jahre alt ist?

Formen von Regressionsanalysen

Es gibt mehrere Formen der Regressionsanalyse:

Die Form der Regressionsanalyse hängt ab

  • von der Anzahl der Variablen, die du testen möchtest und
  • vom Skalenniveau der Variablen (Nominal-, Ordinal-, Intervall-, Verhältnisskala).

Bei einer einfachen linearen oder multiplen Regressionsanalyse muss die abhängige Variable intervall- oder verhältnisskaliert sein.

Was ist dein Score?

Erfahre binnen 10 Minuten, ob du ungewollt ein Plagiat erzeugt hast.

  • 70+ Milliarden Internetquellen
  • 69+ Millionen Publikationen
  • Gesicherter Datenschutz

Zur Plagiatsprüfung

Einfache lineare Regressionsanalyse

Wenn du den Effekt einer erklärenden (oder unabhängigen) Variable auf eine abhängige Variable testen möchtest, verwendest du eine einfache lineare Regressionsanalyse.

Beispiele
Du möchtest das Gewicht einer Person (abhängige Variable Y) basierend auf der Größe einer Person (erklärende Variable X) vorhersagen oder erklären.

Eine einfache lineare Regression kann mit der folgenden Gleichung ausgedrückt werden:

Y = α + βX + u

Der Vergleich besteht aus drei Elementen:

  1. α – Der Interzept (Achsenabschnitt) ist der Startpunkt der Regressionsanalyse, die sogenannte Konstante. Also gibt es ein Basisgewicht auch, wenn die Größe 0 cm ist.
  2. β – Der Regressionskoeffizient zeigt die durchschnittliche Zunahme der abhängigen Variable Gewicht (Y), wenn die erklärende Variable Größe (X) um 1 Zentimeter erhöht wird.
  3. u – Der Fehlerwert ist der Teil der abhängigen Variable, der nicht durch die unabhängige Variable erklärt werden kann.

Im Streudiagramm siehst du den linearen Anstieg der Größe bei zunehmendem Gewicht.

Die Linie nennt man Regressionsgerade und sie ergibt sich aus den Datenpunkten der Stichprobe, die um sie gestreut sind.

Streudiagramm

Multiple Regressionsanalyse

Multiple, oder auch mehrfache Regressionsanalyse genannt, ist eine Erweiterung der einfachen Regression. Dabei werden zwei oder mehrere erklärende Variablen verwendet, um die abhängige Variable (Y) vorhersagen oder erklären zu können.

Beispiele
Du möchtest zusätzlich zur Größe die Variable Geschlecht verwenden, um das Gewicht einer Person zu erklären.

Du fügst Geschlecht als deine zweite Variable (X2) hinzu.

Daraus ergibt sich diese Regressionsgleichung:

Υ = α + β1X+ β2X+ u

Der einzige Unterschied im Vergleich zur einfachen Regressionsanalyse ist, dass ein zweiter Regressionskoeffizient (β) für die erklärende Variable Geschlecht hinzugefügt wurde.

Regressionsanalyse mit SPSS, Excel oder Google-Tabellen durchführen

Regressionsanalysen kannst du mit Programmen wie SPSS, Excel oder Google-Tabellen durchführen.

Lade dir unsere SPSS-Datei herunter, um die einfache lineare Regressionsanalyse selbst zu üben. Klicke im Menü auf:

  • Analysieren
  • Regression
  • Linear

In dem geöffneten Fenster verschiebe nun die Variable Gewicht in das Feld Abhängige Variable und die Variable Größe in das Feld Unabhängige Variable(n).

Mit Ok führst du du die Analyse aus.

Regressionsanalyse SPSS

SPSS

Lade dir unsere Excel-Datei herunter, um mit denselben Daten zu üben. Für die Analyse mit Excel benötigst du das Analyse Add-In.

Gehe dafür im Menü auf:

  • Extras
  • Excel-Add-Ins
  • Wähle Analyse-Funktionen aus

Um die Regressionsanalyse durchzuführen, klicke auf:

  • Daten
  • Datenanalyse (rechtes äußerstes Feld)
  • Regression

Input Y Range: Wähle die Daten der abhängigen Variable YGewicht aus (inklusive dem Namen der Spalte).

Input X Range: Wähle die Daten der erklärenden Variable XGröße aus (inklusive dem Namen der Spalte).

Klicke auf Labels, um anzugeben, dass die oberste Zelle jeweils der Name der Variablen ist.

Beachte
Möchtest du eine multiple Regression berechnen, schreibe die Zellen für die Variable Größe und Alter ins Feld Input X Range.

Unter Output Options wähle New Worksheet Ply. Dadurch werden dir die Ergebnisse in einem neuen Arbeitsblatt angezeigt. Du kannst es Regression nennen.

Klicke auf Ok, um die Analyse durchzuführen.

Excel Analyse Add-In

Excel Add-In

Regressionsanalyse Excel

Excel

Mit unserer Google-Tabellen Datei kannst du die Regressionsanalyse ausprobieren. Bevor du statistische Berechnungen mit Google-Tabellen durchführen kannst, musst du ein Add-on installieren.

Klicke dafür im Menü auf:

  • Add-ons: Add-ons aufrufen
  • Suche nach XLMiner Analysis ToolPak und füge es hinzu. Dann klicke wieder auf
  • Add-ons und aktiviere das XLMiner Analysis ToolPak.

Um die Regression zu berechnen, wählst du in der Seitenleiste Lineare Regression aus.

Input Y Range: Wähle die Daten der abhängigen Variable YGewicht aus (inklusive dem Namen der Spalte).

Input X Range: Wähle die Daten der erklärenden Variable XGröße aus (inklusive dem Namen der Spalte).

Klicke auf Labels, um anzugeben, dass die oberste Zelle jeweils dem Namen der Variablen entspricht.

Unter Output Range markiere einen größeren Bereich unter der Tabelle.

Mit Ok erhältst du die Ergebnisse der Regressionsanalyse.

Regressionsanalyse Google-Tabellen

Google-Tabellen

Regressionsanalyse Interpretation der Ergebnisse

Die Ausgabe einer Regressionsanalyse besteht aus drei Teilen: der Modellzusammenfassung, der ANOVA und den Koeffizienten.

Wir erklären dir die SPSS-Ausgabe für dieses Beispiel. Die Ausgabe von Excel und Google-Tabellen ist sehr ähnlich.

Modellzusammenfassung

Die Modellzusammenfassung zeigt dir mit dem Korrelationskoeffizienten (R) die Stärke des Zusammenhangs und gibt zusätzlich den Wert des Determinationskoeffizienten an.

SPSS-Modellzusammenfassung

R: Der Korrelationskoeffizient gibt an, wie hoch der Zusammenhang der beiden Variablen ist.

  • Interpretation: Der Korrelationskoeffizient ist mit 0,909 sehr hoch. Es besteht also ein sehr hoher Zusammenhang zwischen Gewicht und Größe.

R-Quadrat: Der Determinationskoeffizient gibt an, wie sehr die Varianz der abhängigen Variable durch die erklärende Variable erklärt wird.

Der Wert dieses Koeffizienten liegt immer zwischen 0 und 1, wobei 1 das beste Modell wäre. Dann würde nämlich die gesamte Varianz der abhängigen Variable durch die unabhängige Variable erklärt werden.

Du kannst den Wert von R-Quadrat mit 100 multiplizieren, um einen Prozent-Wert zu erhalten.

  • Interpretation: Ein R-Quadrat von 0,826 bedeutet, dass die Variable Größe 82,6% des Gewichts einer Person erklärt.
Beachte
Wenn du eine multiple Regression durchführst, schau dir das Korrigierte R-Quadrat anstelle des R-Quadrats an. Das R-Quadrat erhöht sich mit der Anzahl der erklärenden Variablen, auch wenn das Modell eigentlich nicht besser wird. Das Korrigierte R-Quadrat korrigiert diesen Fehler.

ANOVA

Der zweite Teil der Ausgabe, ANOVA, testet die Signifikanz des Regressionsmodells.

Die Ergebnisse zeigen, wie hoch die Wahrscheinlichkeit ist, dass alle Regressionskoeffizienten tatsächlich 0 sind und das Resultat der Regressionsanalyse daher auf Zufall basiert.

ANOVA

F: F-Test

Um diese Annahme zu testen, wird ein F -Test durchgeführt.

df: Degrees of freedom (Freiheitsgrade)

In den F -Test einbezogen werden Freiheitsgrade:

  • df = 1: Anzahl der erklärenden Variablen
  • df = 28: Zahl der Beobachtungen (30 Personen) minus der Anzahl der erklärenden Variablen (1) minus 1

Sig.: Signifikanz des Modells

Liegt dieser Wert unter 0,05, dann enthält das Modell signifikante erklärende Variablen.

  • Interpretation: Die Wahrscheinlichkeit, einen F -Wert von 132,863 oder größer mit diesen Freiheitsgraden (1,28) zu erhalten, liegt bei 0,000. Das Modell beinhaltet daher signifikante Variablen (Größe).

Koeffizienten

Die Tabelle zu den Koeffizienten gibt Auskunft über die Größe, das Vorzeichen der Konstante (plus oder minus) und die Signifikanz des Effekts der erklärenden Variable auf die abhängige Variable.

Koeffizienten

T und Sig.: t-Test und Signifikanz

Die Signifikanz des Effekts wird mit einem t-Test ermittelt. Ein Ergebnis unter 0,05 ist signifikant.

  • Interpretation: Die Wahrscheinlichkeit, einen t-Wert von 11,527 oder größer zu erhalten ist 0,000. Also ist der Effekt signifikant.

Regressionskoeffizient B

Für die Regressionslinie sind die Werte des Regressionskoeffizienten B für die Konstante und die erklärende Variable Größe entscheidend.

Die Regressionslinie folgt der Gleichung:

Gewicht = -103,007 + 0,996 * Größe

  • Interpretation: Der geschätzte durchschnittliche Effekt einer Zunahme von einem Zentimeter an Größe ist 996 Gramm (0,996 kg * 1000).
Beispiele
Mit der Regressionsanalyse können wir das Gewicht auf Basis der Größe vorhersagen, wenn wir die Werte in die Regressionsgleichung einsetzen. Wir möchten abschätzen, wie schwer eine 180 cm große Person ist.

Gewicht = -103,007 + 0,996 * 180 = 76,27 kg

Eine 180 cm große Person ist geschätzt 76,27 kg schwer.

Beachte
Bei der multiplen Regression ist der Regressionskoeffizient die durchschnittliche Zunahme der abhängigen Variable, während die anderen erklärenden Variablen gleich bleiben.

Regressionsanalyse Zusammenfassung der Ergebnisse

Du fasst die Ergebnisse der Regressionsanalyse im Ergebniskapitel deiner Bachelorarbeit oder Masterarbeit zusammen.

Darin hältst du auf jeden Fall fest:

  • die erklärte Varianz deines Regressionsmodells (R2 oder R-Quadrat),
  • den F -Wert und die Signifikanz deines Regressionsmodells und
  • den Regressionskoeffizienten und seine Signifikanz.

Für die Zusammenfassung der Ergebnisse der Regressionsanalyse kannst du die folgenden Sätze verwenden:

Eine einfache lineare Regression mit Gewicht als der abhängigen und Größe als der erklärenden Variable ist signifikant, F (1,28) = 132,86, p < ,001.

82,6% der Varianz von Gewicht kann mit der Variable Größe erklärt werden. Der Regressionskoeffizient der Variable Größe ist 0,996 und ist signifikant (t (28) = 11,53; p < ,001).

Die Größe ist ein signifikanter Prädiktor für Gewicht. Die geschätzte Zunahme an Gewicht ist 996 Gramm pro Zentimeter (β = 0,996; t (28) = 11,53; p < ,001). Die Größe erklärt ebenso einen signifikanten Anteil der Varianz von Gewicht von (R2=, 826; F (1,28) = 132,86, p  < ,001).

Statistische Voraussetzungen für die Regressionsanalyse

Damit deine Regressionsanalyse gültige Ergebnisse liefert, müssen einige statistische Voraussetzungen erfüllt sein.

Diese Voraussetzungen werden Gauss-Markov-Annahmen genannt:

  • Die Beziehung zwischen der erklärenden und der abhängigen Variable ist linear.
  • Die Daten wurden mittels Zufallsstichprobe aus der Grundgesamtheit gezogen.
  • Die unabhängigen Variablen, die du in die Regressionsanalyse einschließt, weisen keine lineare Beziehung auf.
  • Exogenität: Der erwartete Wert des Fehlers ist 0.
  • Homoskedastizität: Die Varianz des Fehlerwertes ist für alle Werte der erklärenden Variablen gleich.
War dieser Artikel hilfreich?
Priska Flandorfer

Priska arbeitet im Bereich Content Writing. Sie ist promovierte Sozialwissenschaftlerin und hilft gerne anderen Studierenden beim Bestehen ihrer Abschlussarbeiten.

7 Kommentare

shelly
20. Juli 2020 um 16:55

Hallo libes Scribbr Team,

ich wollte mich erkundigen, ob mir jemand verraten könnte, wie man eine Poweranalyse für eine multpile Regressionsanalyse mit Backwards Elimination rechnet. Denn ich möchte wissen, wie viele Versuchspersonen ich gebraucht hätte.

LG und DANKE schonmal!
shelly

Antworten

Mandy Theel
Mandy Theel (Scribbr-Team)
29. Juli 2020 um 14:56

Hi Shelly,
vielen Dank für deine Frage. Deine Stichprobengröße kannst du am einfachsten mit Poweranalyse Rechnern bestimmen. Dies sind Programme wie beispielsweise G*Power Analysis. Wähle dazu die A-priori Analyse aus, gib deine Werte für die Effektstärke, das Signifikanzniveau, die Anzahl an Prädiktoren sowie die Teststärke ein und du erhältst die benötigte Stichprobengröße für deine Studie. Wir wünschen Dir weiterhin viel Erfolg!

Antworten

M
23. Juni 2020 um 14:22

Hallo,
ich wollte fragen, wie man bei einer regressionsanalyse mit backwards elemination die Ergebnisse zusammenfasst? also schreibe ich da z. B. Modell1 F(df) = ..., Modell2 F(df) = ...?

LG und danke schonmal!
M

Antworten

Mandy Theel
Mandy Theel (Scribbr-Team)
2. Juli 2020 um 12:00

Hallo,
vielen Dank für deine Frage. Ja genau, auch hier gilt wieder, dass es am besten ist, alle dir vorliegenden Ergebnisse für die Modelle auch zu berichten. Tipp: Je nachdem wie viele Modelle und Variablen du bestimmt hast, kann auch eine Tabelle für eine übersichtliche Präsentation der Ergebnisse sehr hilfreich sein.

Antworten

M
20. Juli 2020 um 16:29

Vielen lieben Dank für den Tipp! :)

Antworten

Nayomi Polcar
22. Juni 2020 um 22:14

Hallo liebes Scribbr-Team,

ich bin nun schon eine ganze Weile auf der Suche, wie ich eine Logistische Regression APA-konform in meiner Bachelorarbeit wiedergeben kann. Leider habe ich auch hier nichts dazu gefunden. Könnt Ihr mir bitte weiterhelfen?

Viele Grüße,
Nayomi

Antworten

Mandy Theel
Mandy Theel (Scribbr-Team)
24. Juni 2020 um 11:03

Hi Nayomi,
vielen Dank für deine Frage.
Die Ergebnisse der logistischen Regression kannst du vergleichbar zu anderen statistischen Tests berichten. Wenn du deine Resultate im Text wiedergeben willst, dann schreibe zunächst ein Komma nach der Aussage und dann die Parameter. Also zum Beispiel: „Wir fassen zusammen, dass die Verwendung von Sonnencreme ein signifikanter Prädiktor für einen Sonnenbrand ist, b = x.xx, z = x.xx, p < 0.01, ....“. Weitere Informationen und Beispiele findest du dazu im Kapitel 4.44 „Statistics in Text“ des APA Manuals (6. Edition). Wichtig ist, dass du möglichst alle Parameter deiner Berechnungen auch berichtest, damit der Leser/ die Leserin diese nachvollziehen und ggf. wiederholen kann. Gib also für die logistische Regression zum Beispiel die Beta-Werte mit den dazugehörigen Standardabweichungen, die Signifikanz, R2 und wenn möglich auch die Odds Ratio mit dem Konfidenzintervall an. Ein weiterer Tipp: Du kannst deine Ergebnisse auch in einer Tabelle darstellen. So bekommen Lesende direkt einen besseren Überblick. Viel Erfolg dir weiterhin!

Antworten

Hinterlasse einen Kommentar oder eine Frage

Please click the checkbox on the left to verify that you are a not a bot.