Grundgesamtheit in der Statistik + Beispiele

Die Grundgesamtheit (auch Population) ist die gesamte Anzahl an Objekten, über die du Schlüsse ziehen möchtest.

In den Sozialwissenschaften werden meistens Personen untersucht. Die Grundgesamtheit gibt es aber auch in anderen Disziplinen und sie kann sich aus nicht-menschlichen Objekten zusammensetzen.

Eine Grundgesamtheit besteht also beispielsweise aus:

  • Personen
  • Tieren
  • Pflanzen
  • Firmen
  • Ländern
  • Organisationen

Die einzelnen Objekte, die Teil der Grundgesamtheit sind, werden statistische Einheiten, oder Merkmalsträger genannt.

Meist ist es nicht möglich, die vollständige Grundgesamtheit in die Datenerhebung einzubeziehen. Deshalb wird repräsentativ eine Stichprobe aus der Grundgesamtheit untersucht.

Beispiel Grundgesamtheit
Du möchtest das durchschnittliche Alter bestimmen, in dem Studierende in Deutschland ihr Masterstudium beginnen.

Grundgesamtheit: Alle Studierenden, die ihren Master in Deutschland begonnen haben.
Stichprobe: 500 Studierende, die du für deine Studie befragst.

Weiter lesen: Grundgesamtheit in der Statistik + Beispiele

Hypothesentests – Verfahren & Nullhypothese aufstellen

Ein Hypothesentest wird dazu benötigt, Vermutungen über Zusammenhänge in der Welt zu überprüfen. Auf Grundlage dieser Vermutungen werden Hypothesen aufgestellt.

Anhand eines statistischen Tests findest du heraus, wie wahrscheinlich die aufgestellte Hypothese ist. Demnach wird die Hypothese beibehalten oder verworfen.

Eine 100%ige Sicherheit, dass die Hypothese tatsächlich stimmt, kannst du jedoch nie erlangen. Es besteht immer eine kleine Möglichkeit, dass Ergebnisse nur durch Zufall entstanden sind.

Da es nicht möglich ist, die gesamte Population zu testen, wird stattdessen eine repräsentative Stichprobe verwendet. Auf Grundlage dieser Stichprobe werden Daten erhoben und später analysiert. Anhand der Resultate wird geschlussfolgert, wie die Ergebnisse auf die gesamte Population bezogen aussehen würden.

Weiter lesen: Hypothesentests – Verfahren & Nullhypothese aufstellen

Den p-Wert in der Statistik verstehen und interpretieren

Der p-Wert gibt an, mit welcher Wahrscheinlichkeit das gemessene Ergebnis der Stichprobe zustande gekommen sein könnte, falls die Nullhypothese stimmt.

Somit können Schlüsse darüber gezogen werden, ob gefundene Unterschiede oder Zusammenhänge zwischen Variablen durch Zufall entstanden sind oder nicht.

Weiter lesen: Den p-Wert in der Statistik verstehen und interpretieren

Signifikanzniveau einfach erklärt mit Beispiel

Das Signifikanzniveau α beschreibt die maximale Wahrscheinlichkeit, dass eine Nullhypothese fälschlicherweise abgelehnt wird.

Du wählst das Signifikanzniveau selbst, bevor du einen statistischen Test durchführst. Meistens wird α = 0.05 oder α = 0.01 gewählt. Bei Hypothesentests wird der p-Wert mit dem Signifikanzniveau verglichen, um zu bestimmen, ob ein Zusammenhang, Effekt oder Unterschied statistisch signifikant ist.

Wenn der p-Wert kleiner ist als das gewählte Signifikanzniveau, ist das Ergebnis statistisch signifikant und die Nullhypothese kann abgelehnt werden.

Weiter lesen: Signifikanzniveau einfach erklärt mit Beispiel

Deskriptive Statistik verstehen und anwenden

Ziel der deskriptiven Statistik ist es, einen Überblick über die vorliegenden Daten zu erhalten, diese zu ordnen und zusammenzufassen.

Es geht in der deskriptiven Statistik also um das Beschreiben von Daten und die Ergebnisse beziehen sich dabei immer direkt auf den vorliegenden Datensatz.

Merke
Neben der deskriptiven Statistik gibt es noch die induktive Statistik (auch Inferenzstatistik genannt). Hierbei werden Aussagen über einen Datensatz hinaus getroffen, indem von einer Stichprobe auf eine Grundgesamtheit geschlossen wird.

Weiter lesen: Deskriptive Statistik verstehen und anwenden

Zusammenhangsmaße verstehen und bestimmen

Zusammenhangsmaße werden verwendet, um die Stärke eines statistischen Zusammenhangs zwischen zwei Variablen anzugeben.

Einige Zusammenhangsmaße geben darüber hinaus auch Auskunft über die Richtung des Zusammenhangs.

Welches Zusammenhangsmaß du verwenden kannst, hängt vom Skalenniveau deiner Daten ab.

Beispiel
Wir wollen den Zusammenhang zwischen der Entfernung zwischen Wohn- und Arbeitsort und der Dauer des Arbeitsweges bestimmen. Wir haben also metrische Daten vorliegen und bestimmen daher als Zusammenhangsmaß den Korrelationskoeffizienten nach Pearson.

Weiter lesen: Zusammenhangsmaße verstehen und bestimmen

Cramers V verstehen, bestimmen und interpretieren

Cramers V gibt Auskunft über den statistischen Zusammenhang zwischen zwei oder mehreren nominalskalierten Variablen.

  • Der Wert 0 bedeutet, dass es keinen statistischen Zusammenhang gibt.
  • Der Wert 1 bedeutet, dass es einen perfekten statistischen Zusammenhang gibt.

In der Praxis liegt Cramers V normalerweise zwischen 0 und 1.

Bei der Bestimmung von Cramers V wird der Chi-Quadrat-Wert (X2) standardisiert. Dadurch kannst du Zusammenhänge zwischen Variablen anhand von Cramers V vergleichen.

Beachte
Neben Cramers V ist auch der Kontingenzkoeffizient nach Pearson ein standardisiertes Zusammenhangsmaß, das auf Chi-Quadrat (X2) basiert.

Weiter lesen: Cramers V verstehen, bestimmen und interpretieren

Spearman‘s Rangkorrelationskoeffizienten bestimmen und interpretieren

Den Rangkorrelationskoeffizient nach Spearman wird verwendet, um den Zusammenhang zwischen zwei mindestens ordinalskalierten Variablen zu bestimmen.

Anhand des Rangkorrelationskoeffizienten können wir Aussagen darüber treffen, ob zwei Variablen zusammenhängen, und wenn ja, wie stark der Zusammenhang ist und in welche Richtung er besteht.

Der Rangkorrelationskoeffizient nach Spearman wird auch als Spearmans Rho (ρ) bezeichnet.

Weiter lesen: Spearman‘s Rangkorrelationskoeffizienten bestimmen und interpretieren

Korrelationskoeffizient nach Pearson berechnen und interpretieren

Der Korrelationskoeffizient nach Pearson, auch Korrelationskoeffizient nach Bravais-Pearson genannt, gibt uns Auskunft über den Zusammenhang von zwei metrisch skalierten Variablen.

Beispiel
Wir möchten bestimmen, ob ein Zusammenhang zwischen der Größe und dem Gewicht von Personen besteht und wie stark dieser Zusammenhang ist.

Da es sich um einen standardisierten Koeffizienten handelt, können wir Zusammenhänge anhand des Korrelationskoeffizienten miteinander vergleichen.

Weiter lesen: Korrelationskoeffizient nach Pearson berechnen und interpretieren

Den Kontingenzkoeffizienten verstehen, bestimmen und interpretieren

Der Kontingenzkoeffizient nach Pearson gibt uns Auskunft über den statistischen Zusammenhang zwischen zwei oder mehreren Variablen.

Am häufigsten wird der Kontingenzkoeffizient für nominal– oder ordinalskalierte Daten verwendet.

Da es sich um ein standardisiertes Maß handelt, ist es möglich, mehrere Variablen hinsichtlich des Kontingenzkoeffizienten zu vergleichen.

Weiter lesen: Den Kontingenzkoeffizienten verstehen, bestimmen und interpretieren