Statistische Korrelation verstehen

Die Korrelation informiert uns über den Grad des Zusammenhangs zwischen zwei Variablen.

Dabei besagt eine positive Korrelation, dass sich die Variablen in die gleiche Richtung entwickeln. Wenn also eine Variable ansteigt, gilt dies auch für die andere Variable. Bei einer negativen Korrelation ist es gegenläufig: Ein Anstieg von Variable 1 bedeutet eine Abnahme von Variable 2.

Beachte
Die Korrelation ist immer ungerichtet, d. h., sie sagt nicht aus, welche Variable die andere bedingt. Vielmehr können wir durch die Korrelation aussagen, ob ein Zusammenhang besteht und wie stark dieser ist.

Korrelationen richtig bestimmen und interpretieren

Die Korrelation wird mit dem Korrelationskoeffizienten angegeben. Dieser nimmt immer einen Wert zwischen -1 und +1 an.

Beispiel
Wir wollen den Zusammenhang zwischen der Größe (Variable 1) und dem Gewicht (Variable 2) von Personen bestimmen.

Dabei besagt ein Korrelationskoeffizient

  • nahe der Zahl 1 → starke positive Korrelation,
    z. B.: Größere Personen haben ein höheres Gewicht.
  • nahe der Zahl -1 → starke negative Korrelation
    z. B.: Größere Personen haben ein geringeres Gewicht.
  • nahe der Zahl 0 → Es besteht kaum ein Zusammenhang zwischen den Variablen Größe und Gewicht.

Die Tabelle gibt dir eine Übersicht über die Entwicklungen der beiden Variablen je nachdem, ob sie positiv oder negativ korrelieren.

Korrelation Entwicklung der Variablen Beispiel
Positive Korrelation Variable 1 steigt → Variable 2 steigt Steigt die Größe, steigt auch das Gewicht.
Variable 1 sinkt → Variable 2 sinkt Sinkt die Größe, sinkt auch das Gewicht.
Variable 2 steigt → Variable 1 steigt Steigt das Gewicht, steigt auch die Größe.
Variable 2 sinkt → Variable 1 sinkt Sinkt das Gewicht, sinkt auch die Größe.
Negative Korrelation Variable 1 steigt → Variable 2 sinkt Steigt die Größe, sinkt das Gewicht.
Variable 1 sinkt → Variable 2 steigt Sinkt die Größe, steigt das Gewicht.
Variable 2 steigt → Variable 1 sinkt Steigt das Gewicht, sinkt die Größe.
Variable 2 sinkt → Variable 1 steigt Sinkt das Gewicht, steigt die Größe.
Merke
Wenn du Aussagen über die Richtung des Zusammenhangs treffen willst bzw. wenn du eine abhängige und eine unabhängige Variable vorliegen hast, kannst du eine Regressionsanalyse verwenden.

Korrelation berechnen – Pearson oder Spearman?

Um die Korrelation zu berechnen und anzugeben, wird der Korrelationskoeffizient bestimmt. Dabei ist es vom Skalenniveau der Daten abhängig, welcher Korrelationskoeffizient der richtige ist.

Verwende den Korrelationskoeffizienten nach Pearson, wenn deine Daten metrisch sind, und den Rangkorrelationskoeffizienten nach Spearman, wenn du ordinale Daten vorliegen hast.

Beachte
Bei nominalskalierten Daten bestimmen wir den Kontingenzkoeffizienten, um den Zusammenhang zwischen zwei Variablen anzugeben.

Möchtest du eine fehlerfreie Arbeit abgeben?

Mit einem Lektorat helfen wir dir, deine Abschlussarbeit zu perfektionieren.

Neugierig? Bewege den Regler von links nach rechts!

Zu deiner Korrektur

Korrelation mit dem Streudiagramm interpretieren

Zusätzlich zur Berechnung des Korrelationskoeffizienten kannst du ein Streudiagramm erstellen. Dieses veranschaulicht den Zusammenhang zwischen den zwei Variablen.

Die Abbildung zeigt das Streudiagramm zu unserem Beispiel mit der Größe und dem Gewicht von Personen. Wir sehen, dass eine positive Korrelation vorliegt, da die Verteilung der Beobachtungen (Punkte) eher einer Linie ähnelt.

Die Variablen entwickeln sich also in die gleiche Richtung und wir können schlussfolgern, dass eine höhere Größe mit einem höheren Gewicht einhergeht.

Merke
Wenn die Verteilung der Beobachtungen eher wie eine Linie aussieht, deutet dies auf eine stärkeren Zusammenhang der beiden Variablen und somit einen höheren Korrelationskoeffizienten (r-Wert) hin, als wenn die Beobachtungen weit gestreut sind.

Korrelation SPSS Grafik

Streudiagramm in SPSS, Excel und Google Tabellen

Mit folgenden Schritten erstellst du ein Streudiagramm mit SPSS, Excel und Google Tabellen:

SPSS Grafik → Diagrammerstellung → Streu-/Punktdiagramm
Excel
Google Tabellen
Einfügen → Diagramm → Punkt (X, Y) bzw. Streudiagramm

Korrelation und Kausalität

Bei der Bestimmung der Korrelation ist es wichtig zu beachten, dass die Korrelation zwar ein Hinweis, aber kein Beweis für einen kausalen Zusammenhang ist.

Dies zeigt das Beispiel von der Beobachtung der Störche und der Geburtenrate:

Wenn wir eine erhöhte Anzahl an Störchen beobachten und ebenfalls eine höhere Geburtenrate in der Region zu verzeichnen ist, können wir zwar sagen, dass eine Korrelation vorliegt, nicht aber, dass ein kausaler Zusammenhang besteht (z. B. dass der Storch die Babys bringt).

Wenn du herausfinden möchtest, ob es eine kausale Beziehung gibt, solltest du experimentelle Forschung oder eine Regressionsanalyse mit mehreren Kontrollvariablen durchführen.

Häufig gestellte Fragen

Was sagt die Korrelation aus?

Die Korrelation informiert uns über den Grad des Zusammenhangs zwischen zwei Variablen.

Korrelationskoeffizient nach Pearson oder Spearman?

Verwende den Korrelationskoeffizienten nach Pearson bei metrischen Daten und den Rangkorrelationskoeffizienten nach Spearman bei ordinalen Daten, für die du eine Korrelation bestimmst.

Bedeutet Korrelation Kausalität?

Nein, eine Korrelation ist zwar ein Hinweis, aber kein Beweis für einen kausalen Zusammenhang zwischen zwei Variablen.

War dieser Artikel hilfreich?
Valerie Benning

Hi, ich bin Valerie und schreibe zur Zeit selbst meine Masterarbeit in Psychologie. Meine Erfahrungen aus dem Studium teile ich gerne, damit Studierenden statistische Themen leichter fallen. Hast du Fragen? Dann schreibe gerne einen Kommentar unter einen der Artikel.